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First experimental
cooling. NAP-M storage
ring (Novosibirsk, 1974)

Electron cooling
was invented by
G.I. Budker
(INP, Novosibirsk, 1966)

1. Low-energy (3-300 KeV electrons) cooling (1974-2005): 10’s of coolers
were constructed and successfully operated – all based on magnetized cooling.

2.   Medium-energy (4 MeV) cooling at FNAL: first non-magnetized cooling
demonstrated July 2005.

3. Future medium and high-energy cooling projects: HESR (GSI) and RHIC-II (BNL).
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55 MeV
electrons
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Practical  implementation of e-cooling

1. Produce a beam of cold (low emittance) electrons.

2. Move these electrons with a velocity of the heavy particles

to be cooled.

3. Heavy particles scatter off the electrons and energy is transferred 
to electrons. This energy transfer appears as a friction force 
acting on the ions. The ions are “cooled”.

4. The electrons are renewed.
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Physics of magnetized and non-magnetized cooling

1. Non-magnetized cooling: thermal velocity of electrons smaller 
than the velocity spread of ions which needs to be cooled.

2. Magnetized cooling: strong magnetic field limits transverse 
motion of electrons, so that transverse degree of freedom does 
not take part in the energy exchange. As a result, the efficiency of 
cooling is determined only by the longitudinal velocity spread of 
electrons.

In typical low-energy coolers longitudinal velocity spread of 
electrons is much smaller than transverse – strong velocity 
anisotropy together with magnetic field leads to “fast cooling”.
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Schematic friction force for magnetized and non-
magnetized cooling
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Future high-energy coolers

1. HESR (GSI) cooler – up to 8MeV electrons. Present baseline 
4MeV as in FNAL. However, it needs to be magnetized cooling –
many technical issues.

2.  RHIC-II (BNL)– cooling with bunched electron beam with energy 
up to 55MeV - first high-energy cooling based on new 
technology.
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Limitation of magnetized cooling at high-energy

A problem of Magnetized Cooling for high-energy is that “effective

longitudinal spread of electron” due to magnetic imperfection can 

be rather big:

1. RHIC (BNL): γ=100, θ=1e-5,   θ_ effective=γθ=1e-3

To get significant advantage from “good Magnetized Cooling” – one

needs to make precise solenoid (or have a scheme of precise

alignment). The main purpose of magnetized cooling approach for

RHIC is to kill recombination.

2. HESR (GSI): γ=9, θ=1e-5,  θ_effective=9e-5
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RHIC e-cooling

For electron cooling in RHIC (Au 
ions at γ=108) we studied two 
approaches:

1. Magnetized cooling – B=2-5T 
solenoid, L=2x30m, q=20nC, εe=50 
um

2. Non-magnetized cooling (with 
helical wigglers to control 
recombination) – B=20-50G,          
L=2x30m, q=2-5nC, εe=2-3um

RHIC E-cooler Design Report
http://www.agsrhichome.bnl.gov/eCool

Factor of 10 increase in luminosity in both approaches

<L>=7e27

http://www.agsrhichome.bnl.gov/eCool
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High-energy cooling: need for accurate predictions of 
cooling times

Cooling times for relativistic energies are much longer than for typical 
coolers:

• standard (order of magnitude) estimate of cooling times for Au  ion at 
RHIC storage energy of 100 GeV gives τ of the order of 1000 sec, 
compared to a typical cooling time of the order of  0.1-1 sec in existing 
coolers

• while an order of magnitude estimate was sufficient for typical coolers 
it becomes unacceptable for  RHIC with a store time of a few hours 
and fast emittance degradation due to Intra Beam Scattering (IBS)

We need computer simulations which will give us cooling times 
estimates with an accuracy much better than an order of magnitude.
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Accurate description of the Cooling Force

Cooling Force studies

1. Benchmarking of available formulas vs VORPAL  code (direct 
simulation of friction force) for various regimes.

D. Bruhwiler et  al., AIP Conf. Proc. 773 (Bensheim, Germany,  2004), p.394.
A. Fedotov et al.; Bruhwiler et al.,  Proceedings  of PAC’05 (Knoxville, TN,  

2005).

2.   Experimental benchmarking:
(CELSIUS, December 2004 and March 2005)



Alexei Fedotov, September 30, 2005

13

Part 1
(Friction force formulas: theory and simulations)
A. Fedotov (BNL), D. Bruhwiler, D. Abell (Tech-X), A. Sidorin (JINR)
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Comparison with theory

At a minimum, we want to be sure that we are using the most appropriate 
and accurate  cooling force formulas.

Magnetized friction force:
“electron cooling theory is well understood”

1.    Infinite  magnetic field appoximation (Derbenev-Skrinsky (D-S), Derbenev-
Skrinsky-Meshkov (D-S-M)).

2. Empiric formula (V. Parkhomchuk (VP)) (any strength of the field) – can show 
very different  cooling dynamics for some parameters. Also, has different 
numerical factors.

Different formulas agree with one another within factor of 3-10 , depending on the 
parameters – not good for high-energy estimates.

Non-magnetized force:
More straightforward – but one needs to use correct expressions - we did 
comparison of typically used asymptotic formulas and direct numerical 
integration.
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Codes used for Friction Force studies

We use:

1.  VORPAL code – uses molecular dynamics techniques to explicitly 
resolve close binary collisions and thus capture friction and diffusion 
tensors with a bare minimum of physical assumptions.

C. Nieter, J. Cary, J. Comp. Phys. 196, p. 448 (2004)

D. Bruhwiler et al., AIP Conf. Proc. 773 (Bensheim, 2004), p. 394. 

2. Numerical integration of analytic formulas over electron velocity 
distribution and comparison with simple asymptotic expressions using 
BETACOOL code

The BETACOOL program, http://lepta.jinr.ru

http://lepta.jinr.ru/
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Non-magnetized friction force (B=0) – isotropic electron 
distribution 
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For isotropic Maxwellian distribution f(ve) (Chandrasekar 1942):
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B=0, isotropic electron distribution for ion velocity 
along the longitudinal direction
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B=0 – anisotropic electron velocity distribution (typical 
situation for electron coolers)

Numerical evaluation (BETACOOL):
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Asymptotic formulas – can significantly overestimate friction force, 
especially near the longitudinal rms velocity spread

(∆|| << vi << ∆⊥ )

(vi >> ∆⊥)(vi << ∆||)
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B=0, anisotropic velocity distribution
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Non-magnetized force - summary

For anisotropic velocity distribution:

1. VORPAL gives  good agreement with numerical integrals.

2. Asymptotic formulas  overestimate friction force by a significant 
factor for typical RHIC parameters.

We are presently using numerical integrals in BETACOOL in our 
cooling dynamics studies for the non-magnetized cooling.
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Magnetized friction force
- approximation of strong magnetic field

Numerical integration using Derbenev-Skrinsky (D-S) expressions for the 
magnetized collisions (BETACOOL):
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Asymptotic expressions for all three type of collisions
(Derbenev-Skrinsky-Meshkov (D-S-M)):
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Finite magnetic field

Empiric formula by V. Parkhomchuk (VP) (NIM, 2000):
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1. Similar to D-S asymptotics at low velocities  v < ∆||

2. Very different at large velocities v >> ∆|| - both in numerical factor 
and dependence on angle with respect to the magnetic field direction.

Studies were done to explore magnetized friction force formulas in 
various regimes. Some of these studies are reported in the next few 
slides, using parameters of the RHIC-II cooler based on the 
magnetized approach.
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Friction force for ion velocity along magnetic field line 
V⊥ =0
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Friction force for ion velocity along magnetic field line 
(V⊥ =0) for two different degrees of magnetization 
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Angular dependence at large relative velocities

Strong magnetic field results in friction force dependence on the 
angle with respect to the direction of magnetic field. 

Very different expressions for the transverse and longitudinal 
components of the friction force both of which now depend on 
both transverse and longitudinal velocity.

But how important is such “angular anisotropy” of the friction 
force for finite magnetization? 

This question was already addressed by Parkhomchuk (NIM, 
2000), using simulations with zero temperature electrons. Here we 
try to examine this question for finite temperatures of electron
beam.
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Angular dependence for longitudinal component of the 
friction force

empiric formula by V. Parkhomchuk (VP)
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Angular dependence for Vion=3e5 m/s
(B=5T, for ∆ex,y=8e6 m/s, LM=2.4)
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Longitudinal friction force – scaling with magnetized 
logarithm for finite temperature electron beam
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Transverse component of friction force for 
high velocities V > ∆ e||
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Angular dependence for the transverse component of 
the friction force
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Conclusions on magnetized formulas

Using VORPAL code we are now able to explore fine effects in
magnetized cooling.

We are studying accuracy of available formulas and theories in 
various regimes.
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Part 2
(Experimental benchmarking of the friction force)
A. Fedotov,  V. Litvinenko (BNL)
B. Galnander, T. Lofnes, V. Ziemann (TSL)
A. Sidorin, A. Smirnov (JINR)
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Svedberg Laboratory, Uppsala, Sweden
(The CELSIUS ring)

Team:
Björn Gålnander, Tor Lofnes, Volker Ziemann TSL, Uppsala, Sweden
Alexei Fedotov, Vladimir Litvinenko BNL, USA
Anatoly Sidorin, Alexander Smirnov JINR, Dubna, Russia

Björn Gålnander, TSL
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Major goals

1. With well controlled experiments – systematically study friction 
force dependence on various parameters such as current, 
alignment  angle, magnetic field.

2. Using low-energy cooler try to reproduce conditions possible at 
high-energy cooling:

2.1) Different magnetization regimes – possible transition from good 
to bad magnetization

2.2) Transient cooling – when as a result of slow cooling one  first has 
clear formation of beam core with subsequent cooling of tails –
need to benchmark IBS models for such distributions. very important

for collider
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Example of some previous comparison of experimental 
data with  Derbenev-Skrinsky-Meshkov (D-S-M) and 
V.Parkhomchuk (VP) formulas.

Y-N. Rao et al.: CELSIUS, Sweden’2001:

D-S-M

VP
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Measurement methods: Phase Shift (PS) and Voltage 
Step (HVPS)
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Low relative velocities (linear part and maximum): 
Phase shift (PS) method

• The phase shift method is to apply both the electron cooling and
the rf system (bunched ion beam):

measure the phase shift at equilibrium where the energy gain that 
an ion beam receives on passage through the rf cavity is equal  to 
the energy loss during passage through the cooler

Urf –the rf amplitude
∆φs –the equilbrium phase difference between the bunch and rf cavity
Lc - length of the cooler 
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Large relative velocities:  HVPS method

• The electron beam energy is stepped by quickly changing the HVPS
voltage:

The electron beam begins to drag the ion beam as a whole to a new 
energy corresponding to the new energy of electron beam. During this 
process the ion beam energy is tracked by recording its Schottky
frequency shift

ηp− slippage factor, p0 is ion momentum

ηec− Lc/C – ration of cooler length to circumference
∆f – frequency shift recoded during time ∆t
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Accuracy of HVPS method
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Accuracy of Phase Shift method: important since it 
allows us to find exact location of the force maximum

1.   One needs to introduce small velocity difference between electrons 
and ions – typically, voltage step is used to change energy of 
electrons.

2. One needs accurate measurement of the phase difference between 
the bunch and RF signal.

In our experiment at CELSIUS:
1. Changing RF frequency – allowed very fine steps in velocity 

difference (done before, for example, at IUCF).
2. Instead of network analyzer without phase lock loop the phase was 

measured by phase discriminator.

As a result, very accurate experimental data was obtained !
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Experiment #1:

1. B=0.1T, current dependence:  (Ie=500mA, 250mA, 100mA, 20 mA)

Measure all needed parameters, including parameters of ion 
distribution.
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Experiment #2:

2. Dependence on V_effective:

- measured for several values of tilt in both horizontal and 
vertical direction – both negative and positive directions.

- always recorded longitudinal and transverse sigmas to perform 
accurate convolution over distributions. Measured values are 
close to those predicted by BetaCool simulations

- did calibration of tilt angle with both BPM’s and H0 monitor
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Experiment #3:

3. Measured “transient cooling” 
(IBS+COOLING) both for 
longitudinal and transverse 
profiles: 

Test models of IBS for non-
Gaussian distribution –needed 
for high-energy cooling.
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Experiment #4:

4. Various values of B with various 
currents: Ie=500mA, 300mA, 
100mA, 50 mA (B=0.03, 0.04, 0.05, 
0.06, 0.08, 0.1, 0.12T) – a lot of 
careful adjustments for each new 
setting of magnetic field.

Study various regimes of 
magnetization – needed for high-
energy cooling.
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Experiment #5:

5. Effects of solenoid errors. 

Study description via  V_effective.
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V. Parkhomchuk’s (VP) empiric formula

empiric formula (VP) – single-particle formula
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March 2 data:  B=0.1T, electron current Ie=250 (pink 
color), 100 (red), 50 (blue) mA
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formula (no averaging) with the same numeric 
coefficient for Ie= 250, 100, 50 mA
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March 2 data: B=0.1T
Ie=500 (gray), 250 (pink), 100 (red), 50 (blue) mA
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Electron current Ie=500mA

For high currents of the electron beam the space-charge of the 
electron beam  becomes important:

The electron drift in crossed fields – the electric and magnetic 
fields of the electron beam and longitudinal magnetic field of the 
cooler:

22
2

a
r

B
Ivd βγ

=

For measured distribution of the proton beam for the case under 
comparison (March 2, set#23, B=0.1T, Ie=500mA) - V_drift=6-
7*10^3m/s – which is an additional contribution to V_effective in 
the cooling force formulas.
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March 2 data: Ie=500mA, B=0.1T  – formula vs
experiment with additional contribution to V_effective
from V_drift
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Fits with single-particle formulas

1. Current dependence – friction force scales linearly with 
current/density – as expected from formula.

2. Numeric coefficient for the force is in agreement with the one in 
Parkhomchuk’s formula. Also, it can be adjusted to agree with 
Derbenev’s coefficient  (which results in only slightly different 
effective velocity) – the coefficients are similar for the region of 
low relative velocities (1/π vs 1/(2π)1/2).

3. Note that Coulomb logarithm depends on relative ion velocity 
and V_effective – fitting was done with such velocity-dependent 
logarithm.

4. Fitted V_effective has very weak current dependence:

0.74-0.78*104 m/s



Alexei Fedotov, September 30, 2005

52
Observations

• Using single-particle formula allows to fit experimental data and 
extract V_effective.

• However, since rms velocity spreads of cooled proton beam are 
significant (for our measurements, we would need to have 
dp/p=1e-5 and ε=1e-9 m rad to neglect this effect, while parameter 
of the proton beam with which we did measurements typically 
had about dp/p=5e-5 and ε=5e-8 m rad), fitted V_effective has 
contribution from this effect.

The accurate procedure is then to measure rms velocities of the 
distribution and average single-particle formulas over the proton 
distribution.

This was done for all 10’s of friction force curves
which were measured for various parameters
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Detailed comparison: Averaging over ion distribution

rms parameters of proton beam were measured
for each measurement of friction force curve.
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1. First approach: assume C is known and treat Veff as fitting 
parameter.

2. Second approach: assume Veff is known from measurements and 
treat C as fitting parameter.
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B=0.12T, Ie=300mA
Friction force averaged over proton distribution with 
measured rms velocity spread

results in very small values 
for Veff (0.1-0.2e4m/s)

<F>
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First approach – one fitting parameter Veff

fitted 
veff

measured
onset of oscillations

Longitudinal 
profiles:
expected 
onset of 
oscillations 
for small veff
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Measurements of longitudinal friction force maximum

Approaching friction force maximum

Longitudinal profiles
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Measurements of longitudinal friction force maximum

just past the maximum
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Measurements in non-linear part of the friction force

far past the maximum
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Second approach – one fitting parameter C (with 
measured Veff)
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Second and ½ approach – basically, both C and Veff are 
fitting parameters (plus averaging)

single-particle force with larger 
fitted coefficient C with Veff
somewhat smaller than measured
maximum
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Summary – benchmarking of experiments

At CELSIUS, we were able to measure longitudinal friction force with 
very good precision which allows us to use experimental data for
accurate benchmarking of theory and simulations.
Parameter dependence of the friction force was measured with “well 
controlled” condition:

1) Current dependence
2) Dependence of tilt between electron and proton beams
3) Dependence on solenoid errors
4) Various degrees of magnetization
5) Transient cooling

Benchmarking of experimental data for each of the experiments is
presently in progress.
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